Арсений Анатольевич Данилов, канд. физ.-мат. наук, доцент, Эдуард Адипович Миндубаев, ассистент, Сергей Васильевич Селищев, д-р физ.-мат. наук, профессор, зав. кафедрой, кафедра биомедицинских систем, Национальный исследовательский университет «МИЭТ», г. Москва, г. Зеленоград, e-mail: edmindubaev@gmail.com
1. Bocan K.N., Sejdic E. Adaptive transcutaneous power transfer to implantable devices: A state of the art review // Sensors. 2016. Vol. 16. № 3. E393. 2. Hu L., Fu Y., Ruan X., Xie H., Fu X. Detecting malposition of coil couple for transcutaneous energy transmission // Journal of American Society for Artificial Internal Organs. 2016. Vol. 62. № 1. PP. 56-62. 3. Amar A., Kouki A., Cao H. Power approaches for implantable medical devices // Sensors. 2015. Vol. 15. № 11. PP. 28889-28914. 4. Friedmann J., Groedl F., Kennel R. A novel universal control scheme for transcutaneous energy transfer (TET) applications // IEEE Journal on Emerging and Selected Topics in Circuits. 2015. Vol. 3. № 1. PP. 296-305. 5. Wang J., Smith J., Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability // The Annals of Thoracic Surgery. 2014. Vol. 97. № 4. PP. 1467-1474. 6. Jegadeesan R., Guo Y.-X. Topology selection and efficiency improvement of inductive power links // IEEE Transactions on Antennas and Propagation. 2012. Vol. 60. № 10. PP. 4846-4854. 7. Yakovlev A., Kim S., Poon A. Implantable biomedical devices: Wireless powering and communication // IEEE Communications Magazine. 2012. Vol. 50. № 4. PP. 152-159. 8. Leung H.Y., Budgett D.M., Hu A.P. Minimizing power loss in air-cored coils for TET heart pump systems // IEEE Journal on Emerging and Selected Topics in Circuits. 2011. Vol. 1. № 8. PP. 412-419. 9. Slaughter M., Myers T. Transcutaneous energy transmission for mechanical circulatory support systems: History, current status, and future prospects // Journal of Cardiac Surgery. 2010. Vol. 25. № 4. PP. 484-489. 10. Danilov A.A., Itkin G.P., Selishchev S.V. Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices // Biomedical Engineering. 2010. Vol. 44. № 4. PP. 125-129. 11. Danilov A.A., Mindubaev E.A., Selishchev S.V. Space-Frequency Approach to Design of Displacement Tolerant Transcutaneous Energy Transfer System // Progress in Electromagnetics Research M. 2015. Vol. 44. PP. 91-100. 12. Danilov A.A., Mindubaev E.A., Selishchev S.V. Design and Evaluation of an Inductive Powering Unit for Implantable Medical Devices Using GPU Computing // Progress in Electromagnetics Research B. 2016. Vol. 69. PP. 61-73. 13. Wilson B.S., Dorman M.F. Cochlear implants: Current designs and future possibilities // Journal of rehabilitation research and development. 2008. Vol. 45. № 5. PP. 695-730. 14. Eldridge P., Simpson B.A., Gilbart J. The Role of Rechargeable Systems in Neuromodulation // European Neurological Review. 2011. Vol. 6. № 3. PP. 187-192. 15. Ghovanloo M., Cheng Y. Analytical Modeling and Optimization of Small solenoid Coils for Millimeter-Sized Biomedical Implants // IEEE Transactions on Microwave Theory and Techniques. 2017. Vol. 65. № 3. PP. 1024-1035. 16. Drossos A., Santomaa V., Kuster N. The Dependence of Electromagnetic Energy Absorption Upon Human Head Tissue Composition in the Frequency Range of 300-3000 MHz // IEEE Transactions on Microwave Theory and Techniques. 2000. Vol. 48. № 11. PP. 1988-1995. 17. Li H.L., Hu A.P., Covic G.A., Tang C.S. Optimal coupling condition of IPT system for achieving maximum power transfer // Electronics Letters. 2009. Vol. 45. № 1. PP. 76-77. 18. Hochmair E.S. System Optimization for Improved Accuracy in Transcutaneous Signal and Power Transmission // IEEE Trans. Biomed. Eng. 1984. Vol. BME-31. № 2. PP. 177-186.