Николай Александрович Базаев, канд. техн. наук, ведущий инженер, Юрий Петрович Маслобоев, канд. физ.-мат. наук, доцент, Сергей Васильевич Селищев, д-р физ.-мат. наук, профессор, зав. кафедрой, кафедра биомедицинских систем, Национальный исследовательский университет «МИЭТ», г. Зеленоград, e-mail: bazaev-na@yandex.ru
1. DIN EN ISO 15197:2003 / In Vitro Diagnostic Test Systems – Requirements for Blood Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus (ISO 15197:2003). 2. Burmeister J.J., Arnold M.A. Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy // Clinical Chemistry. 1999. Vol. 45:9. PP. 1621-1627. 3. Robinson M.R., Eaton R.P., Haaland D.M., Koepp G.W., Thomas E.V., Stallard B.R., Robinson P.L. Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation // Clinical Chemistry. 1992. Vol. 38. PP. 1618-1622. 4. Malin S.F., Ruchti T.L., Blank T.B., Thennadil S.N., Monfre S.L. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy // Clinical Chemistry. 1999. Vol. 45. PP. 1651-1658. 5. Burmeister J.J., Arnold M.A., Small G.W. Noninvasive Blood Glucose Measurements by Near-Infrared Transmission Spectroscopy Across Human Tongues // Diabetes Technology & Therapeutics. 2000. Vol. 2. Issue 1. PP. 5-16. 6. Liu R., Chen W., Gu X., Wang R.K., Xu K. Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy // Journal of Physics D: Applied Physics. 2005. Vol. 38. PP. 2675-2681. 7. Kim Y.-J., Yoon G. Prediction of glucose in whole blood by near-infrared spectroscopy: Influence of wavelength region, preprocessing, and hemoglobin concentration // Journal of Biomedical Optics. 2006. Vol. 11. Issue 4. PP. 11-28. 8. Uwadaira Y., Adachi N., Kawano S. Factors affecting the accuracy of non-invasive blood glucose measurement by short-wavelength near infrared spectroscopy in the determination of the glycaemic index of foods // Journal of near Infrared Spectroscopy. 2010. Vol. 18. PP. 291-300. 9. MacKenzie H.A., Ashton H.S., Spiers S., Shen Y., Freeborn S.S., Hannigan J., Lindberg J., Rae P. Advances in Photoacoustic Noninvasive Glucose Testing // Clinical Chemistry. 1999. Vol. 45. Issue 9. PP. 1587-1595. 10. Weiss R., Yegorchikov Y., Shusterman A., Raz I. Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects // Diabetes Technology and Therapeutics. 2007. Vol. 9. Issue 1. PP. 68-74. 11. Ren Z., Liu G., Huang Z., Zeng W., Li D. Laser-induced photoacoustic glucose spectrum denoising using an improved wavelet threshold translation-invariant algorithm / Proceedings of SPIE. 2009. Vol. 7382. 12. Waynant R.W., Chenault V.M. Overview of Non- Invasive Fluid Glucose Measurement Using Optical Techniques to Maintain Glucose Control in Diabetes Mellitus / http://photonicssociety.org/newsletters/ apr98/overview.htm. 13. Trafton A. Shining a light – literally – on diabetes. MIT News Office. 2010 / http://web.mit.edu/ newsoffice/2010/glucose-monitor-0809.html. 14. Lambert J., Storrie-Lombardi M., Borchert M. Measurement of Physiologic Glucose Levels Using Raman Spectroscopy in a Rabbit Aqueous Humor Model // IEEE, Lasers and Electro-Optics Society USA / http://hdl.handle.net/2014/19095. 15. Scecina T., Shih W.-C., Bechtel K., Feld M.S. Raman spectroscopy for measurement of blood analytes. URL: http://web.mit.edu/spectroscopy/research/ biomedresearch/Raman_blood.html. 16. Koo T.-W., Berger A.J., Itzkan I., Horowitz G., Feld M.S. Measurement of Glucose in Human Blood Serum Using Raman Spectroscopy / http:// photonicssociety.org/newsletters/apr98/ ramanspec.htm. 17. Enejder A.M.K., Scecina T.G., Hunter M., Shih W.-C., Feld M.S. Raman spectroscopy for noninvasive glucose measurements // Journal of Biomedical Optics. 2005. Vol. 10. Issue 3. PP. 11-14. 18. Lyandres O., Yuen J.M., Shah N.C., VanDuyne R.P., Walsh J.T., Glucksberg M.R. Progress Toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor // Diabetes Technology and Therapeutics. 2008. Vol. 10. Issue 4. PP. 257-265. 19. Barman I., Kong C.-R., Singh G.P., Dasari R.R., Feld M.S. Accurate Spectroscopic Calibration for Noninvasive Glucose Monitoring by Modeling the Physiological Glucose Dynamics // Analytical Chemistry. 2010. Vol. 82 (14). PP. 6104-6114. 20. Bockle B., Rovati L., Ansari R.R. Polarimetric Glucose Sensing Using Brewster Reflection off of Eye Lens: Theoretical Analysis NASA/TM-2002-211354. SPIE 4624-24 / http://gltrs.grc.nasa.gov/GLTRS. 21. Wan Q. Dual wavelength polarimetry for monitoring glucose in the presence of varying birefringence. Master’s thesis, Texas A&M University. 2006 / http:// hdl .handle .net /1969 .1 /3335. 22. Lo Y.-L., Yu T.C. A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal // Optics Communications. 2006. Vol. 259. Issue 1. PP. 40-48. 23. Purvis G., Cameron B.D., Altrogge D.M. Noninvasive Polarimetric-based glucose monitoring: An in vivo study // Journal of Diabetes Science and Technology. 2011. Vol. 5. Issue 2. PP. 380-387. 24. Webb A.J., Cameron B.D. The use of optical polarimetry as a noninvasive in vivo physiological glucose monitor / Proceedings of SPIE 7906, 79060E (2011). 25. Larin K.V., Eledrisi M.S., Motamedi M., Esenaliev R.O. Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography. A Pilot Study in Human Subjects // Diabetes Care. Vol. 25. Issue 12. PP. 2263-2267. 26. Sapozhnikova V.V., Prough D., Kuranov R.V., Cicenaite I., Esenaliev R.O. Influence of Osmolytes on In Vivo Glucose Monitoring Using Optical Coherence Tomography // Experimental Biology and Medicine. 2006. Vol. 231. № 8. PP. 1323-1332. 27. Kuranov R.V., Sapozhnikova V.V., Prough D.S., Cicenaite I., Esenaliev R.O. Prediction Capability of Optical Coherence Tomography for Blood Glucose Concentration Monitoring // Journal of Diabetes Sciences and Technology. 2007. Vol. 1. Issue 4. PP. 470-477. 28. Gabbay R.A., Sivarajah S. // Diabetes Technology & Therapeutics. 2008. Vol. 10 (3). PP. 188-193.