Архив номеров
Медицинская Техника / Медицинская техника №4, 2010 / с. 6-11

Развитие методов чрескожного беспроводного энергообеспечения имплантируемых систем вспомогательного кровообращения

                                

А.А. Данилов, Г.П. Иткин, С.В. Селищев


Аннотация

В статье обсуждаются научно-технические проблемы, связанные с разработкой систем чрескожного беспроводного транспорта энергии для обеспечения функционирования систем вспомогательного кровообращения – обеспечение эффективности и стабильности передачи энергии, а также термобезопасности имплантируемых элементов системы


Сведения об авторах

Арсений Анатольевич Данилов, канд. физ.-мат. наук, ст. научный сотрудник, кафедра биомедицинских систем, Московский институт электронной техники,
Георгий Пинкусович Иткин, д-р биолог. наук, зав. лабораторией биотехнических систем, ФНЦ трансплатологии и искусственных органов им. академика В.И. Шумакова,
Сергей Васильевич Селищев, д-р физ.-мат. наук, профессор, зав. кафедрой биомедицинских систем, Московский институт электронной техники, г. Москва,
e-mail: realswat@rambler.ru

Список литературы

1. Franco K.L., Verrier E.D. Advanced therapy of cardiac surgery. – Hamilton: BC Decker Inc., 2003. Р. 642.
2. Kherani A.R., Ozb M.C. Ventricular assistance to bridge to transplantation // Surg. Clin. N Am. 2004. № 84. РР. 75-89.
3. Anastasiadis K. Mechanical Support of the Circulatory System // Hellenic J. Cardiol. 2003. № 44. РР. 341-347.
4. Takatani S. Artificial Heart in «Wiley encyclopedia of biomedical engineering». – Ed. M. Akay, Hoboken, John Wiley & Sons, Inc., 2006. PР. 143-156.
5. Dowling R.D., Gray L.A., Etoch S.W., Laks H., Marelli D., Samuels L., Entwistle J., Couper G., Vlahakes G.J., Frazier O.H. Initial Experience with the AbioCor Implantable Replacement Heart System // The Journal of Thoracic and Cardiovascular Surgery. 2004. Vol. 127. № 1. РР. 131-141.
6. Dowling R.D., Etoch S.W., Stevens K.A., Johnson A.C., Gray L.A. Current Status of the AbioCor Implantable Replacement Heart // The Journal of Thoracic and Cardiovascular Surgery. 2001. Vol. 71. РP. 147-149.
7. Haigney P. Groundbreaking Artificial Heart Implanted at UMDNJ-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital / http://www.rwjuh.edu/artificialheart/ abiocor-release-1.html.
8. Ghovanloo M., Lazzi G. Transcutaneous magnetic coupling of power and data in «Wiley encyclopedia of biomedical engineering». – Ed. M. Akay, Hoboken, John Wiley & Sons, Inc., 2006. РР. 3603-3614.
9. Schuder J.C. Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960 // Artificial Organs. 2002. 26 (11). РР. 909-915.
10. Chen H., Hu A.P., Budgett D. Power Loss Analysis of a TET System for High Power Implantable Devices / 2nd IEEE Conference on Industrial Electronics and Applications. 2007. РР. 240-245.
11. Choi S.-W., Lee M.-H. Coil-Capacitator Circuit Design of a Transcutaneous Energy Transmission System to Deliver Stable Electric Power // ETRI Journal. 2008. Vol. 30. РР. 844-849.
12. Dissanayake T., Budget D., Hu A.P., Malpas S., Bennet L. Transcutaneous Energy Transfer System for Powering Implantable Biomedical Devices / Proc. of ICBME 2008. 2009. Vol. 23. PP. 235-239.
13. Dissanayake T.D., Hu A.P., Malpas S., Bennet L., Taberner A., Booth L., Budget D. Experimental Study of a TET System for Implantable Biomedical Devices // IEEE Transactions on Biomedical Circuits and Systems. December 2009. Vol. 3. № 6. РP. 370-378.
14. Matsuki H., Yamakata Y., Chubachi N., Nitta S., Hashimoto H. Transcutaneous DC-DC Converter for Totally Implantable Artificial Heart Using Synchronous Rectifier // IEEE Transactions on Magnetics. September 1996. Vol. 32. № 5. РP. 5118-5120.
15. Moore W.H., Holshneider D.P., Givard T.K., Maarek J.-M. I. Transcutaneous RF-Powered Implantable Minipump Driven by a Class-E Transmitter // IEEE Transactions on Biomedical Engineering. August 2006. Vol. 53. № 8. PP. 1705-1708.
16. Poon A.S.Y., O’Driscoll S., Meng T.H. Optimal Operating Frequency in Wireless Power Transmission for Implantable Devices / Proceedings of the 29th Annual International Conference of the IEEE EMBS. 2007. PР. 5673-5678.
17. Suzuki S., Katane T., Saito O. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy // Journal of Artificial Organs. 2003. Vol. 6. PР. 145-148.
18. Soma M., Galbraith D.C., White R.L. Radio-frequency Coils in Implantable Devices: Misalignment Analysis and Design Procedure // IEEE Transactions on Biomedical Circuits and Systems. April 1987. Vol. BME-34. № 4. РP. 276-282.
19. Parramon J. Energy management, wireless and system solutions for highly integrated implantable devices. Barcelona, 2001 / http://www.tesisenxarxa.net/ TDX-1030103-175019/index_an.html.
20. Si P., Hu A.P., Malpas S., Budgett D. A Frequency Control Method for Regulating Wireless Power to Implantable Devices // IEEE Transactions on Biomedical Circuits and Systems. March 2009. Vol. 2. № 1. РP. 22-29.
21. Okamoto E., Yamamoto Y., Inoue Y., Makino T., Mitamura Y. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption // Journal of Artificial Organs. 2005. Vol. 8. РP. 149-153.
22. Pures R., Vandervoorde G. Recent Progress on Transcutaneous Energy Transfer for Total Artificial Heart System // Artificial Organs. 2001. Vol. 25 (5). PP. 400-405.