Методики вентиляционной поддержки в аппаратах искусственной вентиляции легких с генераторами вдоха постоянного и переменного потока

Аннотация

Приводятся классификация и определения современных методик вентиляционной поддержки при искусственной вентиляции легких.

Рассматриваются особенности реализации методик вентиляционной поддержки в двух основных типах аппаратов искусственной вентиляции легких с генераторами вдоха постоянного и переменного потока.

Проводятся сравнение и анализ преимуществ и недостатков схем аппаратов искусственной вентиляции легких с генераторами вдоха постоянного и переменного потока с точки зрения технической реализации различных методик вентиляционной поддержки при искусственной вентиляции легких и с точки зрения «комфортности» такой реализации для пациентов с различной этиологией дыхательной недостаточности.

Аппараты искусственной вентиляции легких (ИВЛ) – наиболее сложный вид наркозно-дыхательной аппаратуры. Эта аппаратура сложна в методическом плане. Непрерывно появляются новые методики, а многообразные характеристики работы переплетаются с мониторингом, применением во время анестезии, использованием большого числа принадлежностей [1], [2]. В аппаратуре ИВЛ находят применение пневматические, механические, электронные и даже гидравлические (в увлажнителях) схемы и узлы. Требования к надежности и безопасности аппаратов ИВЛ высоки, а длительность непрерывной работы порой достигает 24 ч в сутки и 365 дней в году [3].

Вентиляционная поддержка, проводимая с помощью специальных технических средств, – наиболее эффективный, иногда единственный, метод лечения опасного для жизни полного или частичного нарушения дыхания, возникающего вследствие тяжелых инфекционных заболеваний, серьезной патологии нервной системы и органов дыхания, из-за травм, ранений и поражений электрическим током. Столь же необходима ИВЛ для обеспечения анестезии при серьезных операциях, лечения асфиксии новорожденных и т. п. Постоянное расширение показаний к использованию ИВЛ, большое число моделей, имеющихся на мировом рынке, и вовлечение в их выпуск новых предприятий и фирм – все это позволяет считать производство аппаратов ИВЛ одним из наиболее перспективных направлений производства медицинской техники [4].

VBJ — важнейший метод лечения острой дыхательной недостаточности (ОДН) — жизненно опасного состояния, которое быстро нарастает в результате несоответствия самостоятельного дыхания метаболическим потребностям организма и приводит к максимальному напряжению и последующему истощению компенсаторных механизмов дыхания и кровообращения. ОДН вызывает гипоксемию — снижение нормальных значений PaO_2 и гиперкапнию — повышение $PaCO_2$ и сдвиг рН в кислую сторону [1].

Материал и методы

В целом вентиляционная поддержка решает следующие задачи:

 замену отсутствующей самостоятельной вентиляции.
Острота этой задачи обусловлена тем, что уже через несколько минут после прекращения вентиляции наступают необратимые изменения в головном мозге пациента;

- усиление неадекватной (недостаточной для удовлетворения потребностей организма) вентиляции. Задача возникает, когда сохраненная самостоятельная вентиляция не в состоянии обеспечить поддержание гомеостаза организма, т. е. в первую очередь рСО2, оксигенацию и рН артериальной крови;
- снижение патологически возросшей работы, затрачиваемой пациентом на самостоятельное дыхание. В норме человек расходует на дыхание только несколько процентов от общих энергетических затрат, но вследствие дыхательной недостаточности «цена» сохранения гомеостаза может возрасти настолько, что сделает пациента нетрудоспособным;
- вентиляционная поддержка должна быть такой, чтобы, обеспечивая надлежащий газообмен, исключить или хотя бы снизить неблагоприятное воздействие на пациента резко изменившейся биомеханики вентиляции и способствовать скорейшему восстановлению самостоятельного дыхания.

Для планирования разработки новых изделий необходимо, кроме маркетинга, оценить перспективы и тенденции развития аппаратуры ИВЛ. По нашему мнению, основные тенденции развития этого вида медицинской техники заключаются в следующем:

- реализация ряда новых методик, которые снижают остроту и риск лечебного воздействия и увеличивают роль дыхательной активности пациента;
- расширение применения опорного потока (Flow By) для реализации ряда методик вентиляции, в том числе для идентификации дыхательных усилий пациента;
- расширение применения для аппаратов с более узким набором возможностей генераторов вдоха переменного потока в виде меха или поршня, приводимого программно управляемым электродвигателем;
- применение в аппаратах с более широким набором возможностей генераторов вдоха постоянного потока с использованием компрессоров новых типов.

На определенном этапе развития конкретной области науки и техники сложившаяся ранее привычная терминология становится слишком узкой, неточной и недостаточной для характеристики разросшейся вширь и вглубь данной области. Такая ситуация создалась и в направлении медицинской науки и практики, которое сейчас называется ИВЛ. У ряда специалистов возникают сомнения в правомерности использования этого названия для, например, самостоятельного дыхания под постоянно положительным давлением или вспомогательной вентиляции, и они распространяют термин ИВЛ только на управляемую ИВЛ. Однако такой подход таит

в себе ряд внутренних противоречий. Полагаем, что термин «искусственная вентиляция легких» продолжает иметь вполне конкретное общее содержание и предлагаем следующее определение [4]: искусственная вентиляция легких – поддержание вентиляции легких с помощью технического средства и способом, отличающимся от естественного.

С тем же определением может использоваться иная форма термина – вентиляционная поддержка.

С этой точки зрения логично более широким термином респираторная поддержка обозначить совокупность всех направленных на улучшение дыхания методов, включая фармакологические, физиотерапевтические и т. п.

Каждый из приемов вентиляционной поддержки будем называть ее *методикой*.

Сочетание количественных характеристик конкретной методики вентиляционной поддержки условимся называть ее режимом.

Методики вентиляционной поддержки непрерывно совершенствуются. Чтобы лучше понять множество существующих методик с учетом их вариантов, целесообразно, вопервых, классифицировать эти методики, во-вторых — попытаться определить их исчерпывающим образом, в-третьих — улучшить понимание характерных особенностей изображением их идеализированных функциональных кривых. В конечном счете понимание врачами и инженерами — необходимое условие эффективного и безопасного применения методик и режимов вентиляционной поддержки потребителями, а также безошибочного создания соответствующего технического обеспечения.

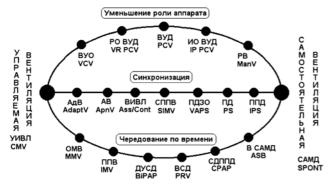


Рис. 1. Классификация методик вентиляционной поддержки (определения методик и соответствующие им функциональные кривые приведены в [3])

Puc. 1 демонстрирует логическую связь различных методик, выделяя как основные *управляемую* и *самосто-ятельную* вентиляцию.

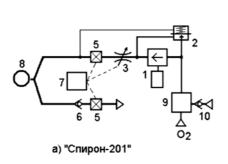
Схема, представленная на $puc.\ 1$, логически предлагает сочетания управляемой и самостоятельной вентиляции в трех аспектах.

Сверху – по росту влияния на параметры вентиляции характеристик пациента и соответственно снижению влияния задаваемых аппаратом показателей.

Посередине – по возрастанию влияния на параметры вентиляции самостоятельной вентиляции в режимах, требующих синхронизации с ней фазы и частоты работы аппарата.

Bнизу — по росту влияния на параметры вентиляции дыхательной активности пациента в режимах, заключающихся в чередовании интервалов принудительной и самостоятельной вентиляции.

Перечень методик нельзя считать ни законченным, ни исчерпывающим. Более того, сущность некоторых, особенно новых, методик не всегда понимается однозначно.


Результаты

С точки зрения удобства технической реализации вышеупомянутых методик вентиляционной поддержки, аппараты ИВЛ с генераторами вдоха постоянного и переменного потока практически равноценны, так как позволяют реализовывать их программными средствами без применения аппаратных.

Исключением являются методики, требующие применения опорного потока (Flow By): CPAP, BiPAP, PRV и ASB. Для их реализации в аппаратах с генераторами вдоха переменного потока приходится прибегать к применению дополнительных аппаратных средств для создания в нужные моменты времени опорного потока (Flow By).

На рис. 2а представлена схема аппарата «Спирон-201». Генератор вдоха 1, к входу которого подключен блок задания состава смеси 9, работает непрерывно. Параллельно ему включен стабилизатор 2, в фазе вдоха поддерживающий постоянный перепад давления на управляемом программой дросселе-регуляторе скорости вдувания 3, а во время выдоха пропускающий газ с закрытого распределителем 5 выхода компрессора снова на его вход. Постоянный перепад давления на дросселе-регуляторе скорости вдувания обеспечивает независимость скорости вдувания газа в легкие от изменения характеристик легких и от произвольных изменений характеристик компрессора 1.

В линиях вдоха установлены распределители 1 и 2, работающие по алгоритму, приведенному в *табл. 1*. Из *таблицы* видна принципиальная особенность схемы: соответствующая коммутация электроуправляемых распределителей реализует целый ряд режимов вентиляционной поддержки без применения дополнительных узлов.

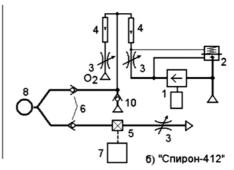


Рис. 2. Схемы аппаратов ИВЛ с генератором постоянного потока: 1 – компрессор; 2 – стабилизатор расхода; 3 – дроссель; 4 – ротаметр; 5 – распределитель с электроуправлением; 6 – самодействующий клапан; 7 – блок управления; 8 – пациент; 9 – блок подачи кислорода; 10 – клапан дополнительного вдоха

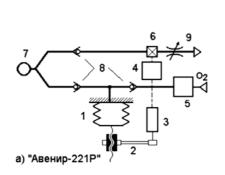
 $Taблица\ 1$ Функции электроуправляемых распределителей в аппарате «Спирон-201»

Фаза цикла	Клапан 1	Клапан 2	Функция
Аппарат выключен	Открыт	Открыт	Возможность самосто- ятельного дыхания
Вдувание	Открыт	Закрыт	Вдувание газа в любом режиме работы
Пауза на вдохе, ожидание попытки вдоха	Закрыт	Закрыт	Вдувание прекращено, выдох еще не начат
Выдох	Закрыт	Открыт	Выдох пациента
сдппд	Открыт	Открыт	Создание динамичес-кого подпора давления

Аппараты ИВЛ для новорожденных и детей отличает относительно небольшая минутная вентиляция и сравнительно малая длительность применения у одного пациента. Это позволяет использовать приведенную на рис. 26 характерную схему с непрерывной подачей газа в дыхательный контур. Программно управляемый распределитель 5 установлен только в линии выдоха; в его закрытом положении вдыхаемый газ поступает пациенту, а в открытом – газ вместе с выдыхаемым газом через дроссель-регулятор ПДКВ 3 выходит в атмосферу. Такой способ обеспечивает дозирование состава и расхода газа двумя аналогичными дросселями 3 с двумя ротаметрами 4 и автоматический расчет подаваемого дыхательного объема и концентрации кислорода во вдыхаемом газе.

Технический прием пропускания в фазе выдоха опорного потока газа через линию выдоха сейчас получает все большее распространение, так как он позволяет за счет взаимодействия газа с дросселем получить в дыхательном контуре стабильное значение положительного давления во время выдоха, воспринять дыхательное усилие пациента по появлению потока вдыхаемого газа и т. п.

Принципиально другая схема реализована в аппарате «Авенир-221Р» (рис. За). Здесь применен генератор вдоха переменного потока, выполненный в виде меха, который приводится в движение посредством передачи винт-гайка специальным с программно управляемым электродвигателем. Подобное решение реализует временные и амплитудные параметры сжатия/растяжения меха со стабилизацией их обратной связью по положению ротора двигателя. Схема позволяет заметно упростить аппарат. Из-за отсутствия компрессора аппарат обладает высоким КПД, что уменьшает размеры аппарата, тру-


доемкость его изготовления и потребление тока. Вместе с тем возникают трудности при реализации режимов вентиляции, требующих подачи в дыхательный контур непрерывного потока газа.

В приведенной на рис. Зб схеме аппаратов РО-6 предусмотрена разделительная емкость с двумя концентрически расположенными мехами. Такой прием придает аппарату характерные особенности генератора вдоха переменного потока и позволяет: отделить дыхательный контур от линии пневматического привода и тем самым обеспечить возможность применения аппарата во время ингаляционного наркоза по любому дыхательному контуру; согласовать требуемые характеристики газа в дыхательном контуре с характеристиками примененного в аппарате компрессора турбинного типа; обеспечить управление по объему, связав работу блока управления с амплитудой движения мехов; при необходимости соединить оба меха для параллельной работы, что хотя и исключает работу мехов как согласующего трансформатора давления, позволяет удвоить подаваемый дыхательный объем и соответственно вентиляцию.

Сравнение генераторов вдоха постоянного и переменного потока и выводы приведены в *табл.* 2.

Tаблица 2 Сравнение аппаратов ИВЛ с генераторами вдоха постоянного и переменного потока

	Генератор вдоха			
Характеристика	постоянного потока	переменного потока		
Скорость вдуваемого газа	Постоянная	Переменная		
Состояние в течение дыхательного цикла	Постоянная готовность начать вдувание	Две фазы – вдува- ние и набор свежей смеси		
Сложность дыха- тельного контура аппарата	Относительно большая	Относительно меньшая		
Инерционность смены фаз дыха- тельного цикла	Относительно меньшая	Относительно большая		
Потребляемая мощность	Постоянно максимальная	Пропорциональна затрачиваемой		
КПД при средней нагрузке	Относительно низкий	Относительно высокий		
Размеры, масса, шумы	Относительно большие	Относительно небольшие		
Реализация опорного потока	Не вызывает проблем	Сильно затруднена		

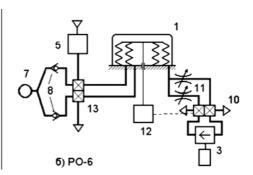


Рис. 3. Схемы аппаратов с генератором вдоха переменного потока: 1 – мех; 2 – передача; 3 – электродвигатель; 4 – блок управления; 5 – блок задания состава газа; 6 – электроуправляемый распределитель; 7 – пациент; 8, 13 – самодействующие клапаны; 9 – устройство ПДКВ; 10 – механически управляемый распределитель; 11 – дроссели установки скорости подачи и отсасывания воздуха; 12 – механизм переключения

Выводы

Сравнение показывает, что аппараты с генератором вдоха постоянного потока отличаются большой сложностью, но и пригодностью к реализации различных видов вентиляционной поддержки, включая те, для которых необходим опорный поток газа. В таких аппаратах также более удобна реализация методик вентиляционной поддержки, требующих синхронизации дыхательных усилий пациента и ответных действий аппарата. Задержка ответа аппарата на дыхательные усилия пациента обычно меньше, чем в аппаратах с генератором вдоха переменного потока. Часто это обстоятельство более комфортно воспринимается пациентами с сохраненным сознанием.

В аппаратах ИВЛ с генераторами постоянного потока реализация методик вентиляционной поддержки осуществляется посредством задания соответствующего методике закона изменения скорости газового потока на вдохе, в аппаратах же ИВЛ с генераторами переменного потока это осуществляется посредством задания соответствующего методике закона движения исполнительного органа (обычно меха).

При реализации методик вентиляционной поддержки, требующих синхронизации дыхательных усилий пациента и ответных действий аппарата, в аппаратах с генератором вдоха переменного потока приходится учитывать то обстоятельство, что после выполнения фазы вдоха необходимо некоторое время на возвращение меха в состояние готовности программного обеспечения. Зато в условиях применения ИВЛ во время наркоза аппараты с генератором вдоха переменного потока позволяют более удобно дозировать состав газовых смесей, а в аппаратах с пневмоприводом и электронным управлением — еще и отделять газ, предназначенный для привода, от газа, предназначенного для вдыхания пациентом.

Аппараты с генератором вдоха переменного потока более пригодны для применения в менее сложных аппаратах, реализующих ограниченное, но достаточное для выбраной области применения количество методик вентиляционной поддержки (например, аппараты ИВЛ для применения при наркозе). Конструкция таких генераторов, а, следовательно и аппаратов, построенных с их применением заметно проще.

Аппараты с генератором вдоха постоянного потока более пригодны для реализации широкофункциональных аппаратов (например, аппараты для длительной реанимации), их конструкция заметно сложнее.

Список литературы:

- 1. Анестезиология и реаниматология. Уч-к / Под ред. О.А. Долиной. 3-е изд. М.: ГЭОТАР-медиа, 2007.
- Зильбер А.П. Искусственная вентиляция легких при острой дыхательной недостаточности. – М.: Медицина, 1978. С. 197.
- 3. *Гальперин Ю.С., Бурлаков Р.И.* Наркозно-дыхательная аппаратура. Устройство, разработка, эксплуатация. М.: ЗАО «ВНИИМП-ВИТА», 2002.
- 4. *Гриппи М.А.* Патофизиология легких. Изд. 2. М. СПб.: Издательство «БИНОМ», «Невский диалект», 2000.
- ГОСТ Р 52423-2005 (ИСО 4135:2001) Аппараты ингаляционной анестезии и искусственной вентиляции легких. Термины и определения.

Роберт Иванович Бурлаков, д-р техн. наук, профессор, ст. научный сотрудник, кафедра БМТ2 «Медико-технические информационные технологии», МГТУ им. Н.Э. Баумана, г. Москва, e-mail: burlakov@bmt.bmstu.ru

И.К. Сергеев, Ю.Г. Стерлин, В.В. Субботин

Многофункциональный аппарат ингаляционной анестезии

Аннотация

Создание современной наркозно-дыхательной аппаратуры, удовлетворяющей потребности лечебных учреждений, является вопросом национальной безопасности. Заложенные в разработку основные концепции позволили создать базовые модульные конструкции, обеспечивающие гибкость при комплектовании лечебно-профилактических учреждений (ЛПУ) любого уровня современным оборудованием, начиная с обеспечения хирургических центров различного профиля и специализированных отделений районных больниц.

Повсеместно сложные хирургические вмешательства не обходятся без использования наркозно-дыхательной аппаратуры. В последние годы наметилась тенденция к вытеснению отечественной анестезиологической аппаратуры с российского рынка, что приводит к серьезной зависимости от импорта.

Создание современной наркозно-дыхательной аппаратуры, удовлетворяющей потребности лечебных учреждений, является вопросом национальной безопасности и входит в число приоритетов развития отечественного медицинского приборостроения. Работа по данной тематике выполнялась при поддержке Министерства промышленности и торговли РФ в рамках реализации важных инновационных проектов по государственному контракту № 11411.0810200.13.В19, шифр «НЕОТЕК».

Заложенные в разработку основные концепции позволили создать базовые модульные конструкции, обеспечивающие гибкость при комплектовании лечебно-профилактических учреждений (ЛПУ) любого уровня современным оборудованием, начиная с обеспечения хирургических центров различного профиля и специализированных отделений районных больниц.

Описание технического облика изделия

Высокая степень изношенности отечественного парка наркозно-дыхательной аппаратуры (НДА) требует замены устаревшего оборудования. Отсутствие отечественных серийных образцов, отвечающих современным методам проведения ингаляционной анестезии, а также высокая стоимость импортных аппаратов явились осно-