Г.М. Алдонин

АВТОНОМНЫЙ МОНИТОРИНГ КОМПЛЕКСА ПАРАМЕТРОВ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Аннотация

Описан автономный аппаратно-программный комплекс мониторинга сердечно-сосудистой деятельности холтеровского типа.

Основным отличием разработанного АПК от существующих в стране и за рубежом является анализ сердечно-сосудистой деятельности по комплексу основных физиологических параметров и их производных в конструктивно едином мониторе.

Повышение эффективности лечения и возвращение пациентов к активной жизни связаны со своевременным обнаружением заболеваний и быстрым оказанием квалифицированной помощи. Актуально создание современных автономных функционально полных информационно-измерительных систем, математического и программного обеспечения для компьютерных технологий мониторинга сердечно-сосудистой деятельности (ССД).

Существующий холтеровский мониторинг состояния здоровья использует диагностику на основе анализа отдельных параметров ССД – электрокардиограммы (ЭКГ), артериального давления (АД) и др. При мониторинге функционального состояния организма важен комплексный анализ и извлечение максимальной информации, содержащейся в сигналах датчиков основных физиологических параметров, в статистических и спектральных характеристиках биопроцессов и биосигналов. Также Европейским кардиологическим обществом и Северо-Американским обществом стимуляции и электрофизиологии особо актуальным признано развитие нелинейных методов анализа состояния организма, поскольку все биопроцессы, для которых как для развивающихся систем характерна структурная самоорганизация, имеют нелинейный характер и фрактальную структуру [1].

Рис. 1. Аппаратно-программный комплекс мониторинга гемодинамики на базе рекордера МКМ-09

Для реализации этих задач в лаборатории медицинской электроники Института инженерной физики и радиоэлектроники Сибирского федерального университета разработан автономный аппаратно-программный комплекс мониторинга ССД холтеровского типа на базе рекордера МКМ-09 [2] (рис. 1).

Основным отличием разработанного АПК от существующих в стране и за рубежом является анализ сердечно-сосудистой деятельности по комплексу основных физиологических параметров и их производных в конструктивно едином мониторе, позволяющем одновременно производить анализ кардиоритма (КР) и вариабельности сердечного ритма (ВСР), электрокардиосигналов (ЭКС), фонокардиосигналов (ФКС), пульсовой волны (ПВ), времени распространения пульсовой волны (ВРПВ), сосудистого тонуса (СТ), артериального давления (АД). Кардиоритм и ВСР отражают состояние регуляторных систем организма; ЭКС, снимаемый с электродов, - состояние электропроводящей системы сердца; ПВ – состояние кровеносной системы; ФКС – состояние мышечной системы сердца; ВРПВ – состояние сосудистого тонуса. Совместный анализ ЭКС и ПВ позволяет количественно оценить параметры кровотока, неинвазивно и атравматично непрерывно мониторировать состояние артериального давления.

Также АПК на базе МКМ-09 обеспечивает возможность дистанционной передачи отчетов о функциональном состоянии пациента в диагностический центр и лечащему врачу с помощью существующей инфокоммуникационной инфраструктуры (e-mail, Internet и по сетям сотовой связи на основе GPRS-технологий). Данные о биосигналах с МКМ-09 через сменный накопитель (ММС-карта) или интерфейс USB передаются в персональный компьютер (ПК). С помощью программного комплекса полученные данные обрабатываются на ПК и представляются в виде графического файла. По сети сотовых операторов графический файл в виде MMS-сообщения передается лечащему врачу-специалисту. Применение USB-интерфейса позволяет проводить измерения с использованием питания

ПК в режиме on-line. Структура АПК на базе МКМ-09 представлена на $puc.\ 2.$

Индивидуальный мониторинг, встроенный в современную инфокоммуникационную инфраструктуру, необходим для своевременной оператив-

ной диагностики нормы сердечно-сосудистой системы как для клинического использования, так и в бытовых условиях.

В последнее время наряду с мониторингом ЭКС большой интерес проявляется к контролю состоя-

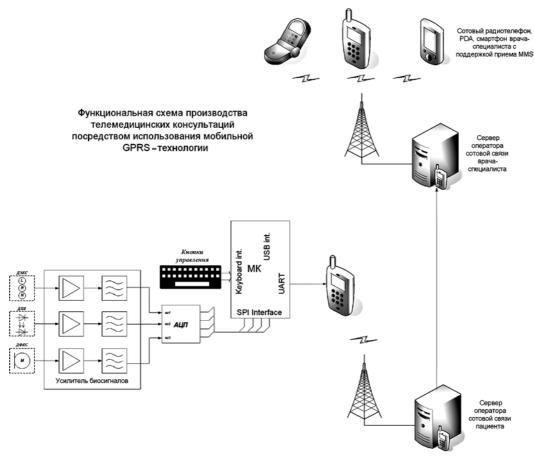


Рис. 2. Реализация АПК дистанционного мониторинга ССД посредством e-mail и Internet-технологий и мобильных GPRS-технологий

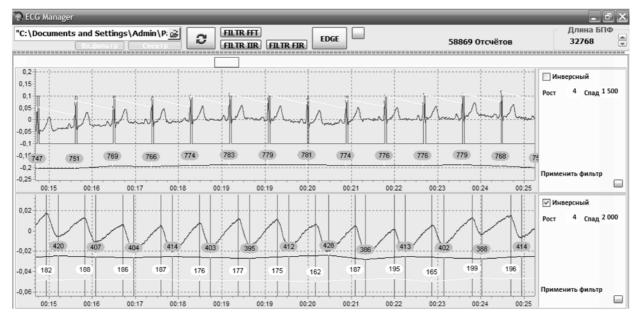


Рис. 3. Совместная запись сигналов ЭКГ и ПВ и измерение времени распространения пульсовой волны (ВРПВ) в фазе систолы (верхняя линия) и диастолы (нижняя линия) с помощью рекордера МКМ-09

ния артериального сосудистого тонуса по скорости распространения пульсовой волны (СРПВ) [3]. С возрастом эластичность сосудов снижается, и это приводит к увеличению скорости распространении пульсовой волны.

Очевидными достоинствами этого метода являются неинвазивность и атравматичность и возможность постоянно проводить измерения ВРПВ по отсчетам задержки ПВ между R-зубцом ЭКС и ПВ в месте установки ФП-датчика (на пальцах левых и правых рук и ног, мочках ушей). Для определения ВРПВ выявляются точка максимального значения R-зубца (пик ЭКС), максимум и минимум пульсовой волны. Временной отрезок между ними ΔT означает ВРПВ в систолической – τ_c и диастолической – τ_d фазах (рис. 3).

Связь ВРПВ с артериальным давлением (АД) (рис. 4a) хорошо проявляется при исследованиях с физической нагрузкой. Разность ВРПВ до нагрузки, после нее и во время восстановления показывает обратную зависимость ВРПВ, измеренного монитором МКМ-09 (рис. 4a), от артериального давления, измеренного сертифицированными амбула-

торными мониторами «BPLab» и автоматическим монитором кровяного давления «A&D Medical» и ВРПВ (рис. 4б). Можно перевести измеренные значения ВРПВ в миллисекунды в СРПВ и соответствующие значения АД в традиционно используемые в медицинской практике миллиметры ртутного столба.

В программное обеспечение АПК на базе МКМ-09 введен нелинейный структурный анализ биопроцессов и биосигналов. Структурная организация биопроцессов и биосигналов выявляется при нелинейном динамическом анализе на основе их вейвлетпреобразований. Биосистемы как высокоорганизованные структуры обладают фрактальной самоорганизацией по принципу масштабно-инвариантного самоподобия [3].

Процедура построения фрактального множества может быть представлена геометрическим образом в виде *иерархического дерева Кейли*, на котором каждый элемент фрактального множества соотнесен с точкой ультраметрического пространства [4].

В ренормгрупповом подходе скелетные функции (скелетные) вейвлет-преобразования как картина

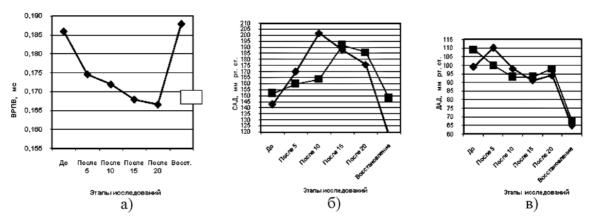


Рис. 4. Графики ВРПВ, измеренного монитором МКМ-08 (a), и графики САД (б), ДАД (в), измеренных амбулаторным монитором «BPLab» и автоматическим монитором кровяного давления «A&D Medical»

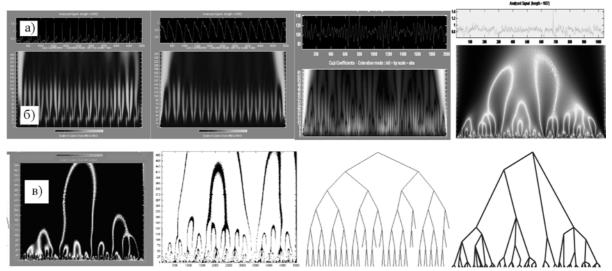


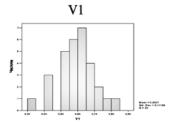
Рис. 5. ФКС, ЭКГ, ПВ, кардиоинтервалограмма (КИГ) (a); вейвлет-анализ (б) и их скелетные функции – деревья Кейли (в)

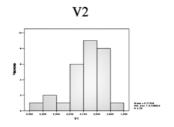
Таблица 1

Таблица 2

Таблица 3

Скейлинги ПВ


i / j	0,8	0,661	0,631	0,64
1	0,656	0,727	0,791	0,803
2	0,714	0,937	0,789	0,8
3	0,333	0,84	0,8	0,75
4	0,8	0,761	0,75	0,83
5	0,65	0,625	0,555	0,76
6	0,615	0,8	0,84	0,631
7	0,75	0,5	0,666	0,5
Sc	0,646	0,670	0,686	0,714
-	0.08	0.057	0.035	0.01


Скейлинги ЭКС

i / j	1	2	3	4	5
1	0,55	0,56	0,45	0,69	0,57
2	0,66	0,61	0,77	0,53	0,31
3	0,57	0,59	0,61	0,42	0,54
4	0,62	0,65	0,51	0,82	0,75
5	0,65	0,62	0,68	0,55	0,61
6	0,75	0,53	0,41	0,67	0,53
Sc	0,62	0,59	0,57	0,61	0,55
σ	0,027	0,016	0,046	0,05	0,053

Скейлинги КИГ

Скеилинги скелетонов кип
0,6
0,55
0,56
0,64
0,67

	N	M	σ
V1	30	0,592	0,111
V2	28	0,713	0,128

Рис. 6. Оценка ренормализационной инвариантности ЭКС, ФКС, ПВ и КР

линий локальных экстремумов поверхностей выявляют структуру анализируемого процесса в виде деревьев Кейли (рис. 56), а их скейлинги — масштабную инвариантность или самоподобие. Для нормального состояния организма человека распределение скейлингов биопроцессов и биосигналов имеет нормальный закон (рис. 6) и близко к значению 0,618 (табл. 1-3), к так называемому отношению «золотого сечения».

Заключение

Высокий процент сердечно-сосудистых заболеваний требует создания удобных социально-приемлемых индивидуальных средств мониторинга ССД.

Совместный анализ ЭКС, ФКС и ПВ позволяет контролировать такой важный показатель ФСО, как состояние сосудистого тонуса, и его реакцию на какие-либо воздействия. Предлагаемый метод не требует дорогостоящего оборудования и может найти широкое применение в практическом здравоохранении.

Нелинейный структурный анализ биопроцессов и биосигналов позволяет объективно оценить норму и патологию функционального состояния организма человека. Скелетные функции (скелетоны) вейвлет-преобразования биосигналов и биопроцессов выявляют структуру анализируемого процесса, а скейлинги – масштабную инвариантность или самоподобие как критерий нормы функционального состояния.

Список литературы:

- 1. Вариабельность сердечного ритма. Стандарты измерения, физиологической интерпретации и клинического использования / Рабочая группа Северо-Американского общества стимуляции и электрофизиологии. СПб.: Институт кардиологической техники, 2001. 64 с.
- Алдонин Г.М., Тронин О.А. Многофункциональный анализ сигналов датчиков сердечно-сосудистой системы // Датчики и системы. 2008. № 1. С. 40-44.
- 3. *Алдонин Г.М.* Робастность в природе и технике. М.: Радио и связь, 2003.
- 4. *Олемский А.И.*, *Флат А.Я*. Использование концепции фракталов в физике конденсированной среды // Успехи физических наук. 1993. Т. 163. № 12. С. 6-9.

Геннадий Михайлович Алдонин, d-p техн. наук, профессор, кафедра «Приборостроение и наноэлектроника», Институт инженерной физики и радиоэлектроники, ФГАОУ ВПО «Сибирский федеральный университет», г. Красноярск, e-mail: galdonin@sfu-kras.ru